Explore recent issues of Contract Pharma covering key industry trends.
Read the full digital version of our magazine online.
Stay informed! Subscribe to Contract Pharma for industry news and analysis.
Get the latest updates and breaking news from the pharmaceutical and biopharmaceutical industry.
Discover the newest partnerships and collaborations within the pharma sector.
Keep track of key executive moves and promotions in the pharma and biopharma industry.
Updates on the latest clinical trials and regulatory filings.
Stay informed with the latest financial reports and updates in the pharma industry.
Expert Q&A sessions addressing crucial topics in the pharmaceutical and biopharmaceutical world.
In-depth articles and features covering critical industry developments.
Access exclusive industry insights, interviews, and in-depth analysis.
Insights and analysis from industry experts on current pharma issues.
A detailed look at the leading US players in the global pharmaceutical and BioPharmaceutical industry.
Browse companies involved in pharmaceutical manufacturing and services.
Comprehensive company profiles featuring overviews, key statistics, services, and contact details.
A comprehensive glossary of terms used in the pharmaceutical and biopharmaceutical industry.
Watch in-depth videos featuring industry insights and developments.
Listen to expert discussions and interviews in pharma and biopharma.
Download in-depth eBooks covering various aspects of the pharma industry.
Access detailed whitepapers offering analysis on industry topics.
View and download brochures from companies in the pharmaceutical sector.
Explore content sponsored by industry leaders, providing valuable insights.
Stay updated with the latest press releases from pharma and biopharma companies.
Explore top companies showcasing innovative pharma solutions.
Meet the leaders driving innovation and collaboration.
Engage with sessions and panels on pharma’s key trends.
Hear from experts shaping the pharmaceutical industry.
Join online webinars discussing critical industry topics and trends.
A comprehensive calendar of key industry events around the globe.
Live coverage and updates from major pharma and biopharma shows.
Find advertising opportunities to reach your target audience with Contract Pharma.
Review the editorial standards and guidelines for content published on our site.
Understand how Contract Pharma handles your personal data.
View the terms and conditions for using the Contract Pharma website.
What are you searching for?
Applying flow cytometry to clinical trial samples
November 9, 2012
By: Kevin Maskell
Merck Millipore
Flow cytometry is a well-established, laser-based technology that can be used for the bioanalysis of cells and particles for size, density and marker expression. Flow cytometry is a robust reproducible method commonly used clinically for the diagnosis and monitoring of leukemia and human immunodeficiency virus (HIV). In R&D settings flow cytometry is routinely used for candidate screening, high content phenotypic assays, immunophenotyping, biomarker detection and receptor occupancy assays. Data derived from flow cytometry can be crucial for the measurement of pharmacodynamic and pharmacokinetic endpoints in clinical studies, and also has the potential to be used for detection of cell populations and cellular biomarkers for stratification of patients in adaptive clinical studies. For over four decades, flow cytometry has supported drug discovery and development, including the development of the first humanized monoclonal antibody therapy alemtuzumab (Campath) for the treatment of B-cell chronic lymphocytic leukemia.1 The technology has become progressively more sensitive and is now routinely used for more in-depth quantitative analyses. In the 1980s, flow cytometry was used as a qualitative tool to demonstrate the removal of lymphocytes, including cancerous B cells, in bone marrow and peripheral blood following treatment with alemtuzumab. Today, flow cytometry is also being used in biomanufacturing to detect small quantitative differences in the lot-to-lot potency of monoclonal antibodies, such as alemtuzumab. Principles of Flow Cytometry In brief, cells, bacteria, beads, and particles, including extra- or intra-cellular molecules of interest, are stained with fluorescent dyes and/or fluorophore-labelled antibodies and passed through the flow cytometer. As each cell/particle flows in single file through a laser beam, particle size and density scatter the laser light, which is detected by forward scatter (FSC) and side scatter (SSC) detectors. Fluorescent dyes and fluorophores are excited by the laser and emit light of a longer wavelength, which is then detected and amplified using photo multiplier tubes (PMTs). These data are used to create a profile of light scattering for each cell/particle. Typically, between 5,000 and one million events per sample are collected for analysis, depending on the type of analysis and rarity of the event of interest. Multi-parameter flow cytometry assays generate a vast amount of data, which is typically displayed graphically using histogram scatter plots. Using boolean gating, a specific region of the histogram (e.g., cells expressing a specific marker) can be analyzed further in separate histogram plots (Figure 1); this is particularly helpful when analyzing biomarker expression on the surface of rare cells. The data presented from flow cytometry experiments are typically reported as the percentage of cells positive or negative for a particular set of markers. In addition, the relative expression levels of important markers are often also reported.
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !